Técnicas de diagnóstico in vitro disponibles para COVID-19: utilidades y limitaciones

Autores/as

  • Patricia Dölz Torres Estudiante de Medicina, Universidad de Chile

Resumen

La magnitud de los desafíos para el control de la actual pandemia de enfermedad por coronavirus 2019 (COVID- 19), requiere de técnicas de diagnóstico precisas y eficientes, para permitir la toma de decisiones y capacidad de respuesta. Los diversos tipos de técnicas de diagnóstico, sirven para determinados propósitos y responden a necesidades diagnósticas en etapas distintas de la infección y seguimiento. Variables como el tipo o la temporalidad de obtención de la muestra, condicionan la información que se recaba. La técnica reacción en cadena de la polimerasa con transcripción inversa en tiempo real (rt-PCR), se basa en la detección de genoma viral y es la técnica de referencia con la que se comparan las otras, es la más confiable y establecida. Sin embargo, esta técnica tiene limitaciones, como el tiempo de respuesta y el requerimiento de instalaciones complejas. Las técnicas alternativas, muchas aún en desarrollo, apuntan a suplir estas restricciones y ofrecer un diagnóstico rápido, barato, reproducible y universalmente disponible. Algunas de ellas utilizan el mismo principio que la rt-PCR o bien usan indicadores de la respuesta inmunológica del hospedero. Las pruebas rápidas antigénicas y serológicas basadas en inmunoensayos de flujo lateral tienen baja sensibilidad. Algunas tecnologías emergentes, muestran una alta sensibilidad y especificidad, pudiendo ayudar en el tamizaje poblacional.

Palabras clave:

técnicas diagnósticas, pandemia por enfermedad por coronavirus 2019 (COVID-19), reacción en cadena de la polimerasa de transcripción inversa (rt-PCR), sensibilidad y especificidad

Referencias

(1) Cheng, M., Papenburg, J., Desjardins, M., Kanjilal, S., Quach, C., Libman, M., Dittrich, S. and Yansouni, C., 2020. Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2. Ann Intern Med, 172(11), pp.726-734.

(2) Santiago I. Trends and Innovations in Biosensors for COVID‐19 Mass Testing. Chembiochem. 2020.

(3) Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-574.

(4) Johns Hopkins Medicine. Diagnostic Strategy for the COVID-19 Pandemic – Bench to Bedside to Blueprint for Policymakers [Internet]. 2020 [citado el 16 Julio 2020]. Disponible en: https://www.youtube.com/watchv=Lm54QImxIqs&list=PLH2L9cbPdyWgh6XGYrYhGXBlyXPzIEp2P

(5) Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054-1062.

(6) Walsh K, Jordan K, Clyne B, Rohde D, Drummond L, Byrne P et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J Infect. 2020.

(7) He X, Lau E, Wu P, Deng X, Wang J, Hao X et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020; 26(5): 672-675.

(8) Cheng P, Wong D, Tong L, Ip S, Lo A, Lau C et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004; 363(9422): 1699-1700.

(9) Wölfel R, Corman V, Guggemos W, Seilmaier M, Zange S, Müller M et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581(7809): 465-469.

(10) Peiris J, Chu C, Cheng V, Chan K, Hung I, Poon L et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003; 361(9371): 1767-1772.

(11) Tuaillon E, Bolloré K, Pisoni A, Debiesse S, Renault C, Marie S et al. Detection of SARS-CoV-2 antibodies using commercial assays and seroconversion patterns in hospitalized patients. J Infect. 2020.

(12) Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020.

(13) Agarwal V, Venkatakrishnan A, Puranik A, Kirkup C, Lopez-Marquez A, Challener D et al. Long-term SARS- CoV-2 RNA Shedding and its Temporal Association to IgG Seropositivity. 2020 Jul.

(14) Hung I, Cheng V, Li X, Tam A, Hung D, Chiu K et al. SARS-CoV-2 shedding and seroconversion among passengers quarantined after disembarking a cruise ship:a case series. Lancet Infect Dis. 2020.

(15) Amanat F, Stadlbauer D, Strohmeier S, Nguyen T, Chromikova V, McMahon M et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020; 26(7): 1033-1036.

(16) Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J et al. Antibody Detection and Dynamic Characteristics in Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020 Apr.

(17) Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single- cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2): 185-192.

(18) Loeffelholz M, Tang Y. Laboratory diagnosis of emerging human coronavirus infections – the state of the art. Emerg Microbes Infect. 2020; 9(1): 747-756.

(19) Wang W, Xu Y, Gao R, Lu R, Han K, Wu G et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020.

(20) To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020 May; 20(5): 565-574.

(21) Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta. 2020; 505: 172-175.

(22) Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020; 382(12): 1177-1179.

(23) Wang X, Tan L, Wang X, Liu W, Lu Y, Cheng L et al. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int J Infect Dis. 2020; 94: 107-109.

(24) Tang Y, Schmitz J, Persing D, Stratton C. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J Clin Microbiol. 2020; 58(6).

(25) Peiris J, Chu C, Cheng V, Chan K, Hung I, Poon L et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003; 361(9371): 1767-1772.

(26) Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X et al.Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020 May; 5(5): 434-435.

(27) Cheung K, Hung I, Chan P, Lung K, Tso E, Liu R et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology. 2020 Jul; 159(1): 81-95.

(28) Foladori P, Cutrupi F, Segata N, Manara S, Pinto F, Malpei F et al. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review.Sci Total Environ. 2020 Nov 15; 743: 140444.

(29) Zhang Y, Chen C, Zhu S, Shu C, Wang D, Song J et al. Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly. 2020; 2(8): 123-124.

(30) Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection. J Med Virol. 2020 Jun; 92(6): 589-594.

(31) To K, Tsang O, Yip C, Chan K, Wu T, Chan J et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin Infect Dis. 2020 Feb.

(32) Li Y, Hu Y, Yu Y, Zhang X, Li B, Wu J et al. Positive result of Sars‐Cov‐2 in faeces and sputum from discharged patient with COVID‐19 in Yiwu, China. Journal of Medical Virology. 2020.

(33) Xie C, Jiang L, Huang G, Pu H, Gong B, Lin H et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases. 2020; 93: 264-267.

(34) Yan Y, Chang L, Wang L. Laboratory testing of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 (2019‐nCoV): Current status, challenges, and countermeasures. Rev Med Virol. 2020; 30(3).

(35) Shen N, Zhu Y, Wang X, Peng J, Liu W, Wang F et al. Characteristics and diagnosis rate of 5630 subjects receiving SARS-CoV-2 nucleic acid tests from Wuhan, China. JCI Insight. 2020 May 21; 5(10).

(36) Carter L, Garner L, Smoot J, Li Y, Zhou Q, Saveson C et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent Sci. 2020 May 27; 6(5): 591–605.

(37) Chan J, Yip C, To K, Tang T, Wong S, Leung K et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol. 2020 Apr; 58(5).

(38) Shih H, Wu C, Tu Y, Chi C. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomed J. 2020 May 30; S2319-4170(20)30085-8.

(39) Wong M, Medrano J. Real-time PCR for mRNA quantitation. Biotechniques. 2005 Jul; 39(1): 75-85.

(40) Corman V, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu D et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan; 25(3): 2000045.

(41) PCR protocol WHO summary [Internet]. World Health Organization; 2020. Disponible en: https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf?sfvrsn=de3a76aa_2

(42) World Health Organization. Laboratory testing strategy recommendations for COVID-19 [Internet]. WHO; 2020. Disponible: https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf

(43) Vogels C, Brito A, Wyllie A, Fauver J, Ott I, Kalinich C et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat Microbiol. 2020 Jul.

(44) Perng C, Jian M, Chang C, Lin J, Yeh K, Chen C et al. Novel rapid identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by real-time RT-PCR using BD Max Open System in Taiwan. PeerJ. 2020; 8: e9318.

(45) Pfefferle S, Reucher S, Nörz D, Lütgehetmann M. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Euro Surveill. 2020 Mar 5; 25(9): 2000152.

(46) van Kasteren P, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van den Brandt A et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 2020 Jul; 128: 104412.

(47) Notomi T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000 Jun 15; 28(12): e63.

(48) Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci Bull (Beijing). 2020 May 5.

(49) Chekani-Azar S, Gharib Mombeni E, Birhan M. CRISPR/Cas9 gene editing technology and its application to the coronavirus disease (COVID-19), a review. J Life Sci Biomed. 2020; 10(1): 01-09.

(50) Huang Z, Tian D, Liu Y, Lin Z, Lyon C, Lai W et al. Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis. Biosens Bioelectron. 2020 May; 164: 112316.

(51) Ai J, Zhang Y, Zhang H, Xu T, Zhang W. Era of molecular diagnosis for pathogen identification of unexplained pneumonia, lessons to be learned. Emerg Microbes Infect. 2020 Mar 16; 9(1): 597-600.

(52) First NGS-based COVID-19 diagnostic. Nat Biotechnol. 2020;3 8(7): 777-777.

(53) Guo X, Geng P, Wang Q, Cao B, Liu B. Development of a Single Nucleotide Polymorphism DNA Microarray for the Detection and Genotyping of the SARS Coronavirus. J Microbiol Biotechnol. 2014 Oct; 24(10): 1445-54.

(54) Hardick J, Metzgar D, Risen L, Myers C, Balansay M, Malcom T et al. Initial performance evaluation of a spotted array Mobile Analysis Platform (MAP) for the detection of influenza A/B, RSV, and MERS coronavirus. Diagn Microbiol Infect Dis. 2018 Jul; 91(3): 245-247.

(55) Bruning A, Aatola H, Toivola H, Ikonen N, Savolainen-Kopra C, Blomqvist S et al. Rapid detection and monitoring of human coronavirus infections. New Microbes New Infect. 2018 Jul; 24: 52–55.

(56) Mak G, Cheng P, Lau S, Wong K, Lau C, Lam E et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol. 2020 Jun; 129: 104500.

(57) Scohy, A., Anantharajah, A., Bodéus, M., Kabamba-Mukadi, B., Verroken, A. and Rodriguez-Villalobos, H., 2020. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J Clin Virol. 2020 May 21; 129: 104455.

(58) Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020 May; 38(5): 515-518.

(59) Le Bert N, Tan A, Kunasegaran K, Tham C, Hafezi M, Chia A et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020.

(60) Abbasi J. The Promise and Peril of Antibody Testing for COVID-19. JAMA. 2020; 323(19): 1881.

(61) Brochot E, Demey B, Touze A, Belouzard S, Dubuisson J, Schmit J et al. Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 inpatients and asymptomatic carriers. 2020.

(62) Ong D, de Man S, Lindeboom F, Koeleman J. Comparison of diagnostic accuracies of rapid serological tests and ELISA to molecular diagnostics in patients with suspected coronavirus disease 2019 presenting to the hospital. Clin Microbiol Infect. 2020 Aug; 26(8): 1094.e7– 1094.e10.

(63) Meyer B, Drosten C, Müller M. Serological assays for emerging coronaviruses: Challenges and pitfalls. Virus Res. 2014; 194: 175-83.

(64) Sharfstein J, Becker S, Mello M. Diagnostic Testing for the Novel Coronavirus. JAMA. 2020; 323(15): 1437.

(65) In Vitro Diagnostics EUAs [Internet]. U.S. Food and Drug Administration. 2020 [citado 28 Julio 2020]. Disponible en: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas

(66) Emergency Use Authorization [Internet]. U.S. Food and Drug Administration. 2020 [citado 28 Julio 2020]. Disponible: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization

(67) Watson J. Interpreting a covid-19 test result. British Medical Journal [Internet]. 2020;369. Disponible: https://www.bmj.com/content/bmj/369/bmj.m1808.full.pdf

(68) Wang Y, Kang H, Liu X, Tong Z. Combination of RT‐qPCR testing and clinical features for diagnosis of COVID‐19 facilitates management of SARS‐CoV‐2 outbreak.J Med Virol. 2020 Jun; 92(6): 538-539.

(69) Li D, Wang D, Dong J, Wang N, Huang H, Xu H et al. False-Negative Results of Real-Time Reverse- Transcriptase Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2: Role of Deep-Learning-Based CT Diagnosis and Insights from Two Cases. Korean J Radiol. 2020 Apr; 21(4): 505-508.

(70) Younes N, Al-Sadeq D, AL-Jighefee H, Younes S, Al-Jamal O, Daas H et al. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses. 2020 May; 12(6): E582.